Không gian lorentz là gì? Các công bố khoa học về Không gian lorentz

Không gian Lorentz là một khái niệm trong vật lý và toán học, đặc biệt trong lý thuyết tương đối. Đó là một không gian bốn chiều bao gồm ba chiều không gian và ...

Không gian Lorentz là một khái niệm trong vật lý và toán học, đặc biệt trong lý thuyết tương đối. Đó là một không gian bốn chiều bao gồm ba chiều không gian và một chiều thời gian. Không gian Lorentz xuất phát từ công thức biểu diễn của lý thuyết tương đối của Albert Einstein trong đó không gian và thời gian được kết hợp thành một không gian bốn chiều duy nhất với việc thay đổi từ không gian sang thời gian trong các hệ quả tương đối và tốc độ gần tốc độ ánh sáng. Khái niệm này đã tạo ra một cách tiếp cận mới cho mô tả các hiện tượng vận tốc cao và tạo ra nền tảng cho lý thuyết tương đối rằng tốc độ ánh sáng là không thể vượt qua.
Không gian Lorentz là một không gian bốn chiều với ba chiều không gian (trục x, y, z) và một chiều thời gian (trục t). Nó được mô tả bởi hệ tọa độ Minkowski với các đơn vị đo thời gian và không gian được thay đổi để duy trì cố định cho vận tốc ánh sáng trong mọi khung tham chiếu.

Khi một đối tượng di chuyển với vận tốc gần tới tốc độ ánh sáng, thì không gian và thời gian bị biến đổi theo một cách đặc biệt. Theo lý thuyết tương đối của Einstein, không gian và thời gian không còn được coi là riêng lẻ mà phải được xem như là một thể thống nhất gọi là "không gian thời gian" hay "không gian Lorentz".

Một trong những đặc điểm quan trọng của không gian Lorentz là khả năng chuyển đổi giữa các hệ tham chiếu đồng thời di chuyển liên quan đến nhau. Các biến đến hội tụ trong các biến đổi Lorentz có thể thay đổi các giá trị của không gian và thời gian theo các quy tắc riêng biệt mà không làm thay đổi cấu trúc chung của không gian Lorentz.

Không gian Lorentz cũng dẫn đến các hiện tượng đáng chú ý như sự co ngắn theo phương di chuyển (hợp đồng giãn cách dòng thời gian) và sự chậm dần của thời gian (dòng thời gian tương đối).

Không gian Lorentz đóng vai trò quan trọng trong lý thuyết tương đối và các lĩnh vực khác như cơ học lượng tử và vật lý hạt nhân. Nó cung cấp cho chúng ta một cách tiếp cận toán học để mô tả và dự đoán các hiện tượng có liên quan đến các chuyển động tới gần tốc độ ánh sáng.

Các bài báo, nghiên cứu, công bố khoa học về chủ đề không gian lorentz:

TÍNH BỊ CHẶN CỦA TOÁN TỬ CALDERÓN-ZYGMUND LOẠI THETA TRÊN KHÔNG GIAN LORENTZ TỔNG QUÁT
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 19 Số 6 - Trang 844 - 2022
Trong bài báo này, chúng tôi xét các toán tử Calderón-Zygmund loại  (xem Định nghĩa 1.3 và Định nghĩa 1.4 trong Phần 1) trên không gian Lorentz có trọng tổng quát , trong đó là một hàm thuộc lớp hàm trọng Muckenhoupt trên  và  là một hàm thuộc lớp hàm trọng Ariño - Muckenhoupt   trên  (xem Phần 1). Trong cấu hình này, chúng tôi thiế...... hiện toàn bộ
#hàm trọng Ariño Muckenhoupt #toán tử Calderón-Zygmund loại #không gian Lorentz có trọng tổng quát #toán tử cực đại
MỘT ĐÁNH GIÁ GRADIENT TRONG KHÔNG GIAN LORENTZ CHO PHƯƠNG TRÌNH P-LAPLACE DỮ LIỆU ĐỘ ĐO VỚI P GẦN 1
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 18 Số 3 - Trang 521 - 2021
Phương trình p-Laplace là một trong các phương trình được nhiều nhà toán học nghiên cứu. Đây là phương trình có nhiều ứng dụng trong vật lí và các ngành khoa học khác. Trong bài báo này, chúng tôi chứng minh một kết quả đánh giá gradient trong không gian Lorentz cho nghiệm renormalized của phương trình p-Laplace dữ liệu độ đo trên miền Reifenberg với giá trị p gần 1. Để chứng minh kết quả chí...... hiện toàn bộ
#không gian Lorentz #dữ liệu độ đo #phương trình p-Laplace #miền Reifenberg
KẾT QUẢ CHÍNH QUY NGHIỆM TRONG KHÔNG GIAN LORENTZ CHO PHƯƠNG TRÌNH DẠNG p-LAPLACE CHỨA SỐ HẠNG SCHRÖDINGER VỚI P>=N
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 20 Số 1 - Trang 92 - 2023
Phương trình p-Laplace chứa số hạng Schrödinger có ứng dụng trong nhiều ngành khoa học. Tính chính quy nghiệm của phương trình này được nghiên cứu gần đây trên các không gian hàm khác nhau. Trong bài báo này, chúng tôi trình bày các kết quả về tính chính quy nghiệm trong không gian Lorentz cho phương trình p-Laplace chứa số hạng Schrödinger trong trường hợp . Phương pháp của chúng tôi là ...... hiện toàn bộ
#tính chính quy nghiệm #toán tử cực đại cấp phân số #Không gian Lorentz #phương trình p-Laplace #đánh giá gradient
DẠNG TỔNG QUÁT CỦA BẤT ĐẲNG THỨC HÀM PHÂN PHỐI VÀ ỨNG DỤNG
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 22 Số 3 - Trang 426-436 - 2025
Bất đẳng thức hàm phân phối gần đây được đề xuất bởi các tác giả Trần & Nguyễn có thể sử dụng để khảo sát các đánh giá gradient cho nghiệm của phương trình đạo hàm riêng. Đặc biệt hơn, các tác giả đã đề xuất một số điều kiện đủ cho hai hàm đo được nhằm thu lại đánh giá so sánh giữa hai chuẩn của hai hàm trên không gian Lebesgue tổng quát. Các kết quả tiếp tục được ứng dụng trong một số lớp bài...... hiện toàn bộ
#bất đẳng thức hàm phân phối #bài toán elliptic tựa tuyến tính #không gian Lorentz #lí thuyết chính quy #phương trình p(x)-Laplace #số mũ biến
HOÁN TỬ CALDERÓN-ZYGMUND LOẠI THETA TRÊN KHÔNG GIAN MORREY-LORENTZ TỔNG QUÁT
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 21 Số 4 - Trang 573 - 2024
Trong bài báo này, chúng tôi xét hoán tử Calderón-Zygmund loại  (xem Định nghĩa 1.3, 1.4 và 1.5 trong Phần 1) trong không gian Morrey – Lorentz tổng quát  (xem Định nghĩa 1.1). Trước tiên chúng tôi thiết lập đánh giá điểm cho toán tử cực đại Hardy-Littlewood và toán tử cực đại chặt tác động lên toán tử Calderón-Zygmund loại  và hoán tử của nó (xem Bổ đề 2.4 và 2.5 ...... hiện toàn bộ
#hoán tử Calderón-Zygmund loại #không gian Morrey – Lorentz tổng quát #toán tử cực đại
Các Tính Chất Hình Học của Các Không Gian Đối Xứng với Ứng Dụng vào Các Không Gian Orlicz–Lorentz Dịch bởi AI
Positivity - - 1998
Chúng tôi nghiên cứu các tính chất lõm cơ bản – tính tròn, và tính tròn đồng nhất, đồng nhất cục bộ và đầy đủ – cho các không gian đối xứng. Một cách đặc trưng các không gian Orlicz–Lorentz với tính chất Kadec–Klee cho sự hội tụ tại chỗ được trình bày. Những kết quả này được áp dụng để thu được các tiêu chí về hội tụ cho các không gian chuỗi Orlicz–Lorentz, và một số chứng minh mới cho phần đủ của...... hiện toàn bộ
#Không gian đối xứng #Tính tròn #Tính đồng nhất #Không gian Orlicz–Lorentz #Tính chất Kadec–Klee
Đường Lagrangian trong Không gian Liên hợp Phi tuyến bốn Chiều Dịch bởi AI
Acta Applicandae Mathematicae - Tập 134 - Trang 133-160 - 2014
Các đường Lagrangian trong \(\mathbb {R}^{4}\) có những mối quan hệ thú vị với biến dạng bậc hai của các đường phẳng dưới nhóm affine đặc biệt và các đường null trong một dạng không gian Lorentz ba chiều. Chúng tôi cung cấp một khung liên hợp phi tuyến tự nhiên cho các đường Lagrangian. Điều này cho phép chúng tôi phân loại các đường Lagrangian có độ cong symplectic không đổi, xây dựng một lớp các...... hiện toàn bộ
#Đường Lagrangian #không gian symplectic #biến dạng bậc hai #đường geodesic #không gian Lorentz #lớp torus Lagrangian.
MỘT CHỨNG MINH NGẮN CHO BẤT ĐẲNG THỨC HÀM PHÂN PHỐI TRÊN CÁC TẬP MỨC
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 18 Số 6 - Trang 1051 - 2021
Tính chính quy nghiệm cho phương trình elliptic tựa tuyến tính là một trong những bài toán đang được nghiên cứu sôi nổi hiện nay bởi nhiều tác giả, bằng nhiều phương pháp khác nhau. Để khảo sát bài toán này, một phương pháp mới được đề xuất gần đây liên quan đến bất đẳng thức hàm phân phối trên các tập mức thông qua toán tử cực đại cấp phân số. Phương pháp này hiệu quả và có thể ứng dụng cho ...... hiện toàn bộ
#đánh giá gradient #bất đẳng thức hàm phân phối trên tập mức #Không gian Lorentz #phương trình p-Laplace
MỘT ĐÁNH GIÁ LORENTZ CÓ TRỌNG CHO BÀI TOÁN PHA KÉP
Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh - Tập 19 Số 6 - Trang 881 - 2022
Bài toán pha kép được mô hình từ bài toán cực tiểu một lớp các hàm năng lượng tích phân với điều kiện tăng trưởng không chuẩn. Bài toán này có nhiều ứng dụng trong Vật lí, như trong bài toán đàn hồi phi tuyến, động lực học chất lỏng và các bài toán đồng nhất. Bài báo này đưa ra một đánh giá gradient toàn cục cho nghiệm phân phối của bài toán pha kép trong không gian Lorentz có liên kết với một h...... hiện toàn bộ
#bất đẳng thức hàm phân phối #bài toán pha kép #đánh giá gradient #không gian Lorentz có trọng
Đặc điểm lực Lorentz của hệ thống dây thừng điện động học trần với catot rỗng Dịch bởi AI
The Journal of the Astronautical Sciences - Tập 68 - Trang 327-348 - 2021
Dây thừng điện động học (EDT) là một loại hệ thống propulsi sử dụng trường địa từ và plasma ionospheric, có tiềm năng thực hiện nhiệm vụ loại bỏ rác không gian mà không tiêu tốn một lượng lớn nhiên liệu. Để hiểu rõ các đặc tính động học của hệ thống EDT trần, một mô hình động lực học quỹ đạo dựa trên mô hình không gian môi trường chi tiết và các đặc điểm xả thực tế của bộ kết nối plasma catot rỗng...... hiện toàn bộ
#Dây thừng điện động học #vệ tinh #mô hình động lực học quỹ đạo #plasma ionospheric #rác không gian
Tổng số: 21   
  • 1
  • 2
  • 3